Applegarth Primary School

Progression of Calculations

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the "Development Matters" EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age and stage expectations

The calculation policy is organised according to age expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at before being moved onto the next level as soon as they are ready. The essence of the mastery curriculum is that all children are working on the same objective (not that they all complete the same work). The emphasis should be on speedy catch up through effective intervention for those working below age related expectations so that they are working on the methods expected for their age by the end of the year.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

- Although the main focus of this policy is showing the core Concrete, Pictorial and Abstract ways of solving maths problems, it is important to recognise that the ability to calculate mentally lies at the heart of numeracy.
- Mental calculation is not at the exclusion of written recording and should be seen as complementary to and not as separate from it. In every written method there is an element of mental processing.
- Written recording both helps children to clarify their thinking and supports and extends the development of more fluent and sophisticated mental strategies.
- Children are encouraged to use the most efficient method for them, making sure they use ones they have a clear understanding of.
- The long-term aim is for children to be able to select an efficient method of their choice that is appropriate for a given task. They should do this by always asking themselves:
- Can I do it in my head using a mental strategy?
- Could I use some jottings to help me?
- Should I use a written method to work it out?

Number Bonds

Number bonds refer to how numbers can be combined or split up, the 'part-part-whole' relationship of numbers.
When talking about number bonds in Singapore maths we are referring to how numbers join together and how they can be split up. A lot of emphasis is put into number bonds from the early year foundation stages so that children can build up their number sense prior to learning addition and subtraction. In the early stages students would be introduced to number bonds with concrete experiences, for example children could be given 6 linking cubes and guided to understand that 2 and 4 make 6 , but that 1 and 5 also make 6 .

The mastery of number bonds is an important foundation required in subsequent mathematical learning and as a basis in the development of mental strategies. A strong number sense allows students to decide what action to take when trying to solve problems in their head.

An example of how a student would use number sense gained from number bonds to perform a mental calculation.
$23+45=?$

Add the ones: $4+5=8$
Answer 68

Good practice in primary mathematics: evidence from 20 successful schools November 2011
The following information has been taken from the Ofsted report Good practice in primary mathematics: evidence from 20 successful schools which can be downloaded here.

Concrete Pictorial Abstract (CPA) Approach

One of the key learning principles behind effective maths mastery is the concrete pictorial abstract approach, often referred to as the CPA approach. The concrete-pictorial-abstract approach, based on research by psychologist Jerome Bruner, suggests that there are three steps (or representations) necessary for pupils to develop understanding of a concept. Reinforcement is achieved by going back and forth between these representations.

Concrete representation

The active stage - a student is first introduced to an idea or a skill by acting it out with real objects. In division, for example, this might be done by separating apples into groups of red ones and green ones or by sharing 12 biscuits amongst 6 children. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representation

The iconic stage - a student has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem. In the case of a division exercise this could be the action of circling objects.

Abstract representation

The symbolic stage - a student is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$ this is the ultimate mode, for it is clearly the most mysterious of the three.
$2+1=3$
ABSTRACT

Progression in Calculations

Addition sum, total, parts and wholes, plus, add, altogether, more, regroup, rename, 'is equal to' 'is the same as'

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model \qquad is a whole, \square is a part, \qquad is a part. There are \qquad in total. First... Then... Now...	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on The bigger number is \qquad . To find the total, I need to start at the biggest number, then count on. (delete words as chn become more familiar)	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the bigger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer. \qquad more than \qquad is \qquad The sum of \qquad and \qquad is \qquad The total of \qquad and \qquad is \qquad

Regrouping to make 10. I need \qquad to make ten. I have \qquad left over. 10 + \qquad is \qquad -.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10? How many more do I add on now?
Adding three single digits \qquad and \qquad make ten. Ten add \qquad is \qquad -	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Subtraction take away, less than, the difference, subtract, minus, fewer, decrease, regroup, rename

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones First... Then... Now...	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$ $4-2=2$		$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back The whole is \qquad . The part we are taking away is \qquad -. Start on \qquad and count back \qquad -.	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the larger number and count back to the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

| Find the difference |
| :--- | :--- | :--- | :--- | :--- | :--- |
| The difference is |
| the amount |
| between amounts. |
| Compare amounts and objects to find |
| the difference. |

Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer. Children should count below the number line	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without renaming The bigger number is \qquad so that goes at the top. Take away the \qquad then takeaway the \qquad .	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when regrouping and show where we write our new amount.

Multiplication double, times, multiplied by, the product of, groups of, lots of, equal groups, regroup, rename

Objective and Strategies	Use practical activities to show how to double a number. Doubling Doubling is an amount twice.
Counting in	
multiples	
We are counting	
in multiples of	
so we count	

Repeated addition We are counting in multiples of \qquad so we count every \qquad	$3+3+3$ Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arrays- showing commutative multiplication \qquad lots of \qquad is the same as \qquad lots of \qquad .	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. \qquad Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{gathered} 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$

Long multiplication			Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact methǫd.

Division share, group, divide, divided by, half, divisor, dividend, quotient, remainder, regroup, rename

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups \qquad shared equally between \qquad is \qquad	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping \qquad split into \qquad groups means th ere would be \qquad in each group.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Repeated subtraction. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division within
arrays
Division with a
remainder
remainder is what is left
equal groups.

Short division | Use place value counters to divide |
| :--- |
| using the bus stop method alongside: |

